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Combinatorial drug treatment strategies perturb biological networks
synergistically to achieve therapeutic effects and represent major
opportunities to develop advanced treatments across a variety of
human disease areas. However, the discovery of new combinatorial
treatments is challenged by the sheer scale of combinatorial chemical
space. Here, we report a high-throughput system for nanoliter-scale
phenotypic screening that formulates a chemical library in nanoliter
droplet emulsions and automates the construction of chemical
combinations en masse using parallel droplet processing. We applied
this system to predict synergy between more than 4,000 investiga-
tional and approved drugs and a panel of 10 antibiotics against
Escherichia coli, a model gram-negative pathogen. We found a range
of drugs not previously indicated for infectious disease that syner-
gize with antibiotics. Our validated hits include drugs that synergize
with the antibiotics vancomycin, erythromycin, and novobiocin,
which are used against gram-positive bacteria but are not effective
by themselves to resolve gram-negative infections.

high-throughput screening | nanoliter droplet | drug synergy | antibiotics |
small molecules

Much of modern drug discovery acts to modulate a specific
drug target using a single agent with maximally selective

effects, arising from the idea of Paul Ehrlich’s “magic bullet” (1).
However, the prevalence of redundancy, feedback, and multi-
functionality in biological networks challenges this approach (2–4).
Therapeutic strategies comprising multiple drugs in combination
have been proposed to exploit network-driven interactions to
achieve the desired functional perturbation, to reduce toxicity, and
to prevent or overcome drug resistance (2–6). In particular, com-
bination antimicrobial treatments that overcome drug resistance by
targeting known resistance elements (e.g., beta-lactamase enzymes)
in addition to essential targets make up a substantial fraction of
antibiotic treatments in clinical development today (7).
Despite the applicability of novel drug combinations, their

identification by high-throughput screening has been slowed by the
high complexity, cost, and compound consumption of conventional
screening methods (8). For example, testing all pairs of drugs from
a modest library of 2,000 drugs (e.g., drugs approved by the US
Food and Drug Administration) requires almost 2 million pairwise
combinations, and far more if compounds are titrated. Experiments
of this scale are currently restricted to specialized laboratories and
facilities that can accommodate the large costs and complexity (e.g.,
total liquid handling steps and logistics of plate layout and workflow
design). Additionally, since these screens test each compound
across thousands of others, thousands of times the compound
quantity is required compared with single-compound screening and
can deplete an entire chemical inventory in a single screening ex-
periment. Current methods for combinatorial discovery strive to
work around these issues, either through computational predictions
of drug synergies to reduce screening scale or by combining mul-
tiple tests in pools with subsequent deconvolution (9–11).
Here, we introduce a strategy for combinatorial drug screening

based on droplet microfluidics that unlocks order-of-magnitude
improvements in logistical complexity and compound consumption
and reduces the need for capital equipment (Fig. 1). Through
miniaturization and high-speed processing, advances in droplet
microfluidics are making major impacts across the life sciences,
such as allowing the measurement of 1,000+ single-cell morpho-
logical (12) and transcriptomic phenotypes (13) and high-resolution

and low cell-input drug dose-response testing (14–19). Our platform
leverages the throughput potential of such microfluidic and
microarray systems (12, 20–22), substituting deterministic liquid
handling operations needed to construct combinations of com-
pounds with spontaneous merging of random pairs of droplets in
parallel inside a microwell array device (Fig. 1) (23). We used this
device to screen compound combinations for bacterial growth in-
hibition in nanoliter droplets, demonstrating its manual operation at
high throughput without robotic liquid handling.

Results and Discussion
Our platform constructs and assays all pairwise combinations of a
set of input compounds (Fig. 1). First, we combine concentrated
compounds in well plates with fluorescence barcodes (unique ratios
of three fluorescent encoding dyes), cells, and media (Fig. 1A). We
then emulsify a sample from each well into 20,000 1-nL aqueous
droplets (total volume of 20 μL) in a fluorocarbon oil continuous
phase with a fluorosurfactant that stabilizes the emulsion. We use
standard micropipettes to pool and load the droplets into a
microwell array such that each microwell captures two droplets at
random (Fig. 1B, SI Appendix, Fig. S1, and Movies S1 and S2) (23).
We then seal the microwell array to the glass substrate to limit
evaporation and chemical cross-contamination across microwells
and fix the assembly by mechanical clamping. We identify the
contents of each droplet by reading the fluorescence of the
encoding dyes by low-magnification epifluorescence microscopy
(2× or 4×magnification, 6.5 μm per pixel optical resolution) (Fig. 1
B and D) (95 to 99% accuracy; see SI Appendix, Fig. S2) (15, 18).
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We then merge all pairs of droplets by applying a high-voltage AC
electric field (Movie S3) and incubate the microwell array to allow
cells to respond to the pair of compounds (24). Last, we image the
microwell array to read out the assay result (e.g., cell growth in-
hibition) and map this measurement to the pair of compounds
previously identified in each well (Fig. 1 B and D). Pairwise com-
pound combinations are thus constructed spontaneously by droplet
merging, considerably reducing the number of liquid handling steps
required (SI Appendix, Fig. S3).
A challenge in droplet microfluidics that has limited cell-based

compound screening is the exchange of compounds between
droplets on assay-relevant timescales. Exchange is mediated by the
dynamic equilibrium of surfactant molecules between the aqueous–
oil droplet interface and reverse micelles in the oil phase (see SI
Appendix, Supplementary Text) (25–27). In a screening context, this
creates the potential both for false negatives resulting from com-
pound loss from droplets and for false positives resulting from the
exchange of active compounds among droplets. In our workflow,
transport of compounds can occur between droplets during the
pooling of droplets, and between microwells after droplets are
loaded into the microwell array. Although compound exchange
cannot be eliminated in the brief droplet-pooling phase before
loading the microwell array (Figs. 1A and 2A), we hypothesized that
the microwell array design could limit the extent of false positives
caused by cross-contamination during the longer incubation step by
(i) depleting free surfactant by an oil wash, and (ii) limiting reverse
micelle diffusion between microwells by mechanically sealing the
microwell array to a substrate (Fig. 1 B and C and SI Appendix, Fig.
S1). To measure compound cross-contamination on our platform,
we monitored the transport of the fluorescent dye resorufin (a
reference compound commonly used to assess chemical cross-
contamination) from “source” droplets to “sink” droplets (enco-
ded by fluorescein, a slow-exchanging dye) (Fig. 2A) (25, 26). We
found that compartmentalization alone (without depletion of free
surfactant) limited resorufin transport compared with exchange
between pairs of droplets in the same microwell (Fig. 2 B and C).
Depleting free surfactant by washing the loaded microwell array
before sealing further decreased exchange to levels below our de-
tection limit (Fig. 2D). Although some compounds can exchange
more quickly than resorufin and may exchange significantly during
the droplet-pooling phase before loading (26, 28), these compounds
would likely be diluted below active concentrations across many

other droplets. The low false-positive rate of the screen (described
below) and further analysis of our screening hits show that these
fast-exchanging compounds (presumably present in our library of
drugs and druglike molecules) do not need to be identified and
removed before screening (SI Appendix, Supplementary Text and
Figs. S4 and S5).
As a first application of our platform, we developed fluorescence-

based growth-inhibition phenotypic screening assays for three model
bacterial pathogens often used in antibiotic discovery: Pseudomonas
aeruginosa, Staphylococcus aureus, and Escherichia coli (14, 16). For
each organism, we compared growth dynamics, antibiotic drug re-
sponses, and reproducibility of the droplet platform with conven-
tional Erlenmeyer flask and 96-well plate broth-culture methods
(Fig. 2 E–G and SI Appendix, Figs. S6–S11). Growth dynamics
(monitored by constitutive GFP fluorescence) between Erlenmeyer
flasks and the droplet platform showed close correspondence, in-
dicating no detectable toxicity or gross physiological impact on the
bacteria (SI Appendix, Fig. S6). We chose 6 to 12 antibiotics rep-
resenting different chemical classes and mechanisms of action and
compared IC50 values estimated from five-point dose-response
curves measured with the droplet platform and with the same
fluorescence assay in a 96-well plate broth-culture format (SI Ap-
pendix, Fig. S7). Overall, we found similar potency for each antibi-
otic and comparable levels of assay noise (R2 values between
technical replicates) (Fig. 2 E–G and SI Appendix, Figs. S8–S11).
High-throughput screening is extremely sensitive to assay noise,

as hits must be enriched with respect to false positives. In the
droplet platform, droplets carrying different compounds are paired
randomly in microwells, and noise is suppressed by making multi-
ple measurements of the same compound pair across replicate
microwells. The number of replicate microwells is a random vari-
able with an expected value determined by the number of possible
unique input droplet-pair combinations and the number of
microwells on a given chip (SI Appendix, Fig. S12). To explore this
relationship between microwell-level replication and throughput,
we down-sampled the number of replicate microwells per antibiotic
dose and compared measurements from two technical replicate
microwell arrays. We observed diminishing improvements at rep-
lication levels past 5 to 10 microwells, which is the approximate
level of replication obtained when 64 unique inputs are applied to
our standard-size array (Fig. 2G and SI Appendix, Fig. S12).
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Fig. 1. Droplets platform for combinatorial drug screening. (A) Compounds, cells, and encoding dyes are emulsified into nanoliter droplets and subsequently
pooled. (B) A microwell array randomly pairs droplets (SI Appendix, Fig. S1 and Movies S1 and S2). Once loaded, free surfactant is depleted by washing to limit
compound exchange. Low-magnification epifluorescence microscopy identifies the compounds carried by each droplet. Pairs of droplets in each microwell are
merged and incubated (Movie S3). A second optical scan reads out a phenotypic assay (e.g., cell growth inhibition). (C) Photographs of the microwell array
during loading (SI Appendix, Fig. S1 and Movies S1 and S2). Scale bars are approximate due to perspective effect. (D) Three-color fluorescence micrograph of
droplets in microwell array paired with a subsequent assay of growth inhibition of E. coli cells, monitored by fluorescence from constitutively expressed GFP.
Only 50% of droplet inputs contained cells; therefore, a fraction of microwells do not show GFP fluorescence. PDMS, polydimethylsiloxane.
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To evaluate our ability to detect synergy between compound
pairs, we tested a canonically synergistic pair—ampicillin (a beta-
lactam antibiotic) and sulbactam (a beta-lactamase inhibitor)—
against P. aeruginosa (SI Appendix, Fig. S13). Synergy is commonly
assessed by crossing a dilution series of each compound in a
“checkerboard” assay matrix and quantifying the activity levels via
Bliss independence or the fractional inhibitory concentration (FIC)
index method (29, 30). Synergy (defined as an FIC index of ≤0.5)
was detected in both 96-well plate broth culture (FIC index ≤0.5)
and the droplet platform (FIC index ≤0.25) (SI Appendix, Fig. S13).
We next applied our system to identify compounds that can

potentiate the activity of antibiotic drugs. In the face of rising an-
tibiotic resistance, efforts to develop new classes of antibiotics have
yielded little success (7, 31, 32). Unfortunately, many antibiotics
such as vancomycin, erythromycin, and novobiocin cannot be used
to treat important gram-negative pathogens such as E. coli, P.
aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae
due to the impermeability of their outer membranes and numerous
efflux systems (7, 32). Previous work suggests that identifying
compounds that sensitize drug-resistant pathogens is a promising
strategy to broaden the spectrum of existing antibiotics (33–35).
We screened for potentiation of a panel of 10 antibiotics that

have diverse mechanisms and biochemical target localizations
(each antibiotic titrated across a three-point response curve; see SI
Appendix, Table S1) by a “drug repurposing” library of 4,160 com-
pounds against E. coli (Fig. 3A) (34, 36). This curated library is
composed of tool and investigational compounds with extensive
preclinical and clinical research data, as well as launched drugs
(36). We reasoned that hits from screening this library may have
potential for expedited translation for use in sensitizing gram-
negative pathogens to existing antibiotics (36, 37).
This screening effort resulted in the construction of 4+ million

total microwell assays across 156 microwell array chips, and was

completed in 10.3 d in two phases (pilot phase: 800 compounds,
30 chips, 3.33 d; full-scale phase: 3,360 compounds, 126 chips, 7 d).
With a total of 64 unique inputs per microwell array chip (set 1:
10 antibiotics at three dose points + 2 controls; set 2: 24 to
28 compounds + 4 to 8 controls), each chip-run constructed 720 to
840 compound × antibiotic combinations (24 to 28 compounds × 10
antibiotics × three dose points), 276 to 378 compound × compound
combinations [0.5 × (24 × 23); 0.5 × (28 × 27)], 120 to 240 control ×
antibiotic combinations (4 to 8 controls × 10 antibiotics × 3 dose
points), and 48 to 56 compound × control combinations (24 to
28 compounds × 2 controls) (Fig. 3A).
Our analysis focused on determining compound × antibiotic

synergies by evaluating a shift of a three-point antibiotic dose
response with and without compound, quantified by a synergy
metric (Bliss score) for each compound × antibiotic-pair scoring
deviation from Bliss independence (Fig. 3 A and D). Hits from our
screen were then validated in eight-point checkerboard assays and
quantified by Bliss independence and the FIC index method.
We evaluated screening performance from our full-scale phase,

comprising 126 microwell array chip-runs and 100,800 compound ×
antibiotic assay points from 3,360 compounds. Dropout can occur
due to chip-run failures; failures to produce, load, and classify
droplets; or failure to observe any microwells containing a partic-
ular compound × antibiotic combination. Of the 126 chip-runs, we
had two logistical failures and removed 16 runs due to failed
controls to yield a final chip passing rate of 85.7% (108 runs) (Fig.
3B and SI Appendix, Fig. S14). Droplet production, pooling/load-
ing, or fluorescence barcode assignment failed for 49 compounds
(Fig. 3B). Overall, of the starting 100,800 compound × antibiotic
combinations, 84.7% were successfully measured, with an overall
median value of 13 replicate microwells (Fig. 3 B and C).
To assess data quality, each chip-run was performed with a set of

positive (sulbactam × ampicillin; erythromycin × tetracycline) and
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Fig. 2. Characterization of droplet platform performance. (A) To model cross-contamination, we tracked the exchange of the fluorescent dye resorufin
(carried by source droplets) to empty droplets (sink droplets, encoded by fluorescein). (B–D) Exchange is measured over time by the fraction of fluorescence
measured in source droplets (red lines) and sink droplets (gray lines) as a function of surfactant wash concentration (0%, 0.5%, and 2% wt/wt). The effect of
compartmentalization is measured by comparing the rates of dye accumulation in sink droplets when cocompartmentalized in microwells with source
droplets (dotted lines) or other sink droplets (solid lines). Exchange that occurred before loading was measured by the fraction of fluorescence in sink droplets
at the first time point (SI Appendix, Supplementary Text and Fig. S4F). (E) Estimated IC50 for each antibiotic compared between 96-well plate and droplet
platform formats (SI Appendix, Figs. S8–S10). Dotted lines show the diagonal. (F) Comparison of two technical replicates on the droplet platform of growth
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negative (blank media × all antibiotics) controls to determine the
expected sensitivity and false-positive rate of the screen (Fig. 3 A
and D and Dataset S1). The Bliss score distribution of all blank
media × antibiotic pairs was well described by a t distribution,
which we used as a null model to calculate P values for each
compound × antibiotic pair (SI Appendix, Fig. S15). To measure
sensitivity, each run included one or both positive controls:
sulbactam × ampicillin (large effect size, expected Bliss score ∼1)
and erythromycin × tetracycline (small effect size, expected Bliss
score ∼0.5) (Fig. 3D). At an expected false-positive rate of 10−4 (P
value threshold), we recovered 82.8% of sulbactam × ampicillin
controls (n = 58/70) and 65.7% of erythromycin × tetracycline
controls (n = 46/70) (Fig. 3E). To call hits from all of the
compound × antibiotic pairs (Dataset S2), we chose a Bliss score
effect-size threshold that separated sulbactam × ampicillin controls
from erythromycin × tetracycline controls (Bliss score >0.7) (Fig.
3E). Using these thresholds to score all pairs yielded 28 hit
compound × antibiotic pairs (0.098% of total 28,470) from 20 dis-
tinct compounds (0.70% of total 2,847) (Fig. 3E and Dataset S3).
Although we focused analysis on compound × antibiotic pairs, we
did identify that one hit compound, pasireotide, also synergized
with tedizolid, another compound in the repurposing library run on
the same microwell array chip (SI Appendix, Fig. S16).
We selected 17 hit compound × antibiotic pairs from 11 distinct

compounds for confirmation in eight-point checkerboard assays
measured in 96-well plate broth-culture format (Fig. 4A and SI
Appendix, Fig. S17). For comparison, we measured an additional
29 pairs that did not pass Bliss score and P value thresholds in the
primary screen, for a total of 46 tested pairs. Of the hit combi-
nations, 14 of 17 (82.4%) scored as synergistic by Bliss indepen-
dence at the same dosages as in the primary screen (P = 5.8 × 10−4,
calculated from a binomial distribution null model where

compound × antibiotic pairs randomly score positive with proba-
bility P = 19/46, the fraction positive of total tested pairs) (Fig. 4A,
SI Appendix, Figs. S17 and S18, and Dataset S4). We investigated
whether differences between primary-screening Bliss scores and
96-well plate Bliss scores could be explained by physicochemical
properties of compounds, but did not find any systematic effects
(SI Appendix, Fig. S18 and Dataset S4).
After applying the more stringent FIC synergy criterion (FIC

index ≤0.5) to each checkerboard, we identified six compounds
among our hits with synergies with at least one antibiotic (four
from full-scale phase, two from pilot phase; see SI Appendix, Figs.
S17, S19, and S20). For two hit compounds, we identified addi-
tional synergies beyond what was detected in the primary screen,
and upon further inspection, we found these additional compound ×
antibiotic pairs scored close to the thresholds applied in the pri-
mary screen (Fig. 4 A and B, SI Appendix, Fig. S17, and Dataset
S4). Notably, we found no previous indication of antibacterial
activity for five of these six compounds, which constitute a range of
chemical structures, characteristics, and known biochemical tar-
gets (Fig. 4B). Comparing the primary screening data for each hit
across the full panel of antibiotics shows some commonalities and
differences that may provide clues as to mechanism (Fig. 4 C–E
and Dataset S3) (34). For example, many hits showed common
interactions with novobiocin and erythromycin, but divergent ef-
fects with vancomycin, ranging from strong synergy to strong an-
tagonism (Fig. 4 C–E).

Conclusion
Here, we demonstrated a nanoliter droplet combinatorial drug
screening platform and applied it at scale to discover novel po-
tentiators of antibiotics from a drug repurposing library. Exploring
the mechanism of action of these potentiators may guide future
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Fig. 3. Drug repurposing antibiotic potentiation screen. (A) To measure antibiotic potentiation, we generated three-point dose-response curves for
10 different antibiotics in combination (SI Appendix, Table S1) with 4,160 compounds (each at single concentration, 100 μM) from a drug repurposing library,
as well as positive controls (sulbactam and erythromycin) and negative controls (blank media). Each chip formulated all pairwise combinations of two input
sets: (i) three antibiotics × 10 concentrations + 2 controls (32 total) and (ii) 24 to 28 compounds + 4 to 8 controls (32 total). (B) The final numbers of analyzed
combinations in the full-scale screening phase, after accounting for losses and quality filtering (SI Appendix, Fig. S14). (C, Top) The histogram (blue bars) and
cumulative distribution (red line) of the number of microwells observed for each compound × antibiotic combination. (C, Bottom) Tukey box plot of mean
numbers of microwells of all compound × antibiotic combinations on each chip in full-scale phase of screen. (D) Representative primary screening data are
shown for control compounds (Dataset S1). Synergy was identified by comparing antibiotic response curves in the presence of a compound compared with
those of the antibiotic alone (gray dotted lines), made quantitative by calculating a Bliss score. At Right, the growth in the presence of compound alone
(Compound, indicated by colored points), or the absence of antibiotic and compound (Media, indicated by gray points) are shown. (E, Right) A total of
28 compound × antibiotic combination hits (red points) were determined by thresholding all compound × antibiotic pairs (gray, shaded contours) on effect
size (Bliss score >0.7, gray dotted line) and statistical significance (P < 10−4, gray dotted line) (Datasets S2 and S3). (E, Left) Projection of vertical axis. Sensitivity
to positive controls (blue indicates sulbactam; green indicates erythromycin) (Dataset S1). (E, Bottom) Projection of horizontal axis. Bliss score distributions of
positive and negative (black indicates blank) controls (Dataset S1). Histograms are set to 50% opacity to show overlap. Amp, ampicillin; Chlor, chloram-
phenicol; Cyc, cycloserine; Eryth, erythromycin; Fos, fosfomycin; Nor, norfloxacin; Nov, novobiocin; Tet, tetracycline; Trim, trimethoprim; Vanc, vancomycin.
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efforts to engineer antibiotic adjuvants, an important strategy in the
fight against antibiotic resistance in gram-negative pathogens (33–
35). By replacing robotic liquid handling with spontaneous random
assembly of compound combinations in nanoliter droplets at a
large scale, the logistical complexity of our combinatorial screen
was reduced such that we could complete this screen using only
manual pipetting at the macroscale (SI Appendix, Fig. S3) in just
10 d. This platform is compatible with commercially available
laboratory equipment already present in many academic and in-
dustrial life science research facilities. Other groups have already
demonstrated successful droplet-based culture of a wide range of
organisms, including human cell lines (12, 15, 18, 19), and we ex-
pect that our platform can be developed to support many types of
phenotypic and biochemical assays. The use of optical microscopy
for assay readout facilitates extension to a variety of disease-specific
models and imaging assays, including gene expression reporters
and high-content cell imaging (12, 15). While much work remains,
our platform represents an important tool to leverage drug com-
binations for chemical biology and therapeutics discovery.

Materials and Methods
SI Appendix, Table S2 includes a summary of parameters relevant to methods.

Microwell Array Chip Design and Fabrication. Each chip (6.2 × 7.2 × 0.64 cm)
had 43,000 microwells (two circles with a diameter of 148.6 μm, set at 10%
overlap; 100 to 120 μm in height; 50-μm spacing). Silicon wafer molds were
created by photolithography (SU8-2050; Microchem). Chips were fabricated
by soft lithography from polydimethylsiloxane (Dow Corning Sylgard) and
coated with 1.5-μm parylene C (Paratronix).

Cell Culture Preparation. Plasmid-borne constitutive GFP-expressing strains of S.
aureus (LB media), P. aeruginosa PAO1 [cation-adjusted Mueller–Hinton broth
(CAMHB) media], and E. coli K-12 MG1655 (CAMHB media) were used. Over-
night cultures were diluted 1:1,000 and, upon reaching log phase, normalized
in fresh media to OD600 of 0.03 to 0.04 (∼10 cells per 1-nL droplet).

Fluorescence Encoding. Each input was premixed with a unique ratio of three
fluorescent encoding dyes (Alexa Fluor 555, 594, and 647; Thermo-Fisher
Scientific; final concentration 1 μM).

Fluorescence Microscopy. Decoding droplet contents and measuring growth
responseswere performedon a Nikon Ti-E inverted epifluorescencemicroscope
with excitation from a Lumencor Sola LED illuminator (100% power setting).
Images were collected by a Hamamatsu ORCA-Flash 4.0 camera at 6.5 μm per
pixel resolution (2× or 4× magnification). Droplet contents were decoded by
collecting images in three fluorescence channels corresponding to excitation
from the three respective dyes and processed using custom software (SI Ap-
pendix, Fig. S2). GFP signal was measured from eachmicrowell at the assay end
point. The time required for imaging (∼12 min) was comparable to the scan
time, enabling a staggered protocol where each chip was set up while the
previous chip was scanning. See SI Appendix, Supplementary Materials and
Methods for details on how images were analyzed.

Microwell Array Chip Operation. A 20 μL aliquot of each input was transferred
from a 96-well plate by micropipette to a Bio-Rad QX200 cartridge and
emulsified into 20,000 1-nL droplets (continuous phase: fluorocarbon oil 3M
Novec 7500, 0.5 to 2% wt/wt RAN Biotech 008-FluoroSurfactant) using the
Bio-Rad QX200 instrument or a custom aluminum pressure manifold (Fig.
1A) (20 min to process a 96-well plate).

To set up a chip (total setup time 30 min, with throughput of 18 chips per
day by staggering the protocol), the chipwas placed inside an acrylic assembly
(10 min) and suspended over a hydrophobic glass slide (1.2-mm thickness,
Aquapel treated; Brain Research Laboratories) by plastic spacers (250-μm
height) (SI Appendix, Fig. S1 and Movies S1 and S2), creating a gap that was
then filled with fluorous oil. Using a micropipette, a fraction (e.g., 4 μL) of each
set of droplets was pooled into a single well/tube (5 min) (∼200,000 droplets
total), and injected into the chip while adding oil to sweep away excess
droplets (5 min) (Fig. 1 B and C and Movies S1 and S2). Lastly, the chip was
washed with oil (0% wt/wt surfactant), the spacers were removed, and the
chip was mechanically clamped to the glass (Fig. 1B).

The chip was imaged by epifluorescence microscopy to identify the fluores-
cence barcodes (12 min, standard-size chip). The droplets weremerged via an AC
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Fig. 4. Validation of hits from primary screen. (A) In eight-point checkerboard assays with E. coli, we tested a total of 46 compound × antibiotic combi-
nations, of which 17 (11 distinct compounds) scored as hits in the primary screen (SI Appendix, Figs. S17 and S18 and Dataset S4). Combinations that scored
positive (red) and negative (black) for Bliss synergy are plotted according to results from the primary screen. Gray dotted lines indicate primary screening
thresholds. (B) Target, status, antibiotic synergy set (by FIC index method), and selected structures of validated hits (SI Appendix, Figs. S17, S19, and S20 and
Dataset S3). The first four compounds are from the full-scale phase; the last two are from the pilot phase. Antibiotics marked with an asterisk represent
additional synergies revealed in validation. Structures were rendered in ChemDraw from SMILES strings. (C, Top) Primary screening data and calculated Bliss
scores for NSC 23766. Growth in presence of compounds alone (Compound, indicated by red dots) relative to the absence of antibiotic and compound (Media,
indicated by gray dots) is shown. (C, Bottom) The 96-well plate checkerboard assay of NSC 23766 × novobiocin (positive for synergy) (Left) and NSC 23766 ×
tetracycline (negative for synergy) (Right). For each checkerboard assay in C–E, the relative growth values and Bliss scores are shown (color scaling is indicated
at Far Right). (D) Primary screening and checkerboard data for indacaterol × erythromycin (positive for synergy). (E) Primary screening and checkerboard data
for benurestat × vancomycin (positive for synergy). Amp, ampicillin; Chlor, chloramphenicol; Cyc, cycloserine; Eryth, erythromycin; Fos, fosfomycin; Nor,
norfloxacin; Nov, novobiocin; Tet, tetracycline; Trim, trimethoprim; Vanc, vancomycin.
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electric field [4.5 MHz, 10,000- to 45,000-V source underneath the glass supplied
by a corona treater (Electro-Technic Products), ∼10-s exposure)] (Movie S3).

The cells were incubated (37 °C, 7 h, without shaking) and their growth
was assayed by constitutive GFP fluorescence (Fig. 1D), starting at ∼10 cells
per droplet to a saturation of 103 to 104 cells per droplet.

Antibiotic Potentiation Screening Logistics. For all screening, each chip received
droplets containing a total of 64 inputs, with 32 held constant (set 1: 10 anti-
biotics at three concentrations and controls) and 32 varied across chips (set 2:
compounds and controls) (Fig. 3A). See SI Appendix, Supplementary Materials
and Methods for a comprehensive breakdown. All drug responses were mea-
sured in E. coli K-12 MG1655 (see Cell Culture Preparation above), by evaluating
the median GFP intensity across all microwells containing a given droplet pair.
In the full-scale phase of screening, chip quality and assay performance were
also scored (SI Appendix, Supplementary Materials and Methods).

Bliss Synergy Scoring. For each compound × antibiotic (single dosage), we
computed the deviation of the observed growth inhibition (fAB) from the
expectation from Bliss independence (fA + fB − fA fB) (29), where fA and fB
represent the growth inhibition of the antibiotic alone and the compound
alone, respectively. For each compound, we summed this metric across the
three antibiotic dosages to yield a final metric, the Bliss score. To estimate
the SE, we computed the SD of Bliss scores obtained by bootstrapping
(100 iterations). We then computed a test statistic (Bliss score/SE), modeled
with a t distribution fit to blank negative controls (SI Appendix, Fig. S15).
Compounds with an fB value >80%were removed from analysis (Dataset S5).
See SI Appendix, Supplementary Materials and Methods for details on the
estimation of fA, fB, and fAB values and SEs.

Checkerboard Validation. Compounds were resupplied and tested against
E. coli K-12 MG1655 in 64-point matrix checkerboard assays using 96-well
V-bottom plates (Costar), in CAMHB media and 2% DMSO (final volume
100 μL), measured at a single end point (7 h, 37 °C, 220 rpm) by GFP signal
using a plate reader (SpectraMax; Molecular Devices).

We estimated Bliss synergy using the samemethod and compound (100 μM)
and antibiotic dosages (SI Appendix, Table S1) as in primary screening, scoring

positive if the Bliss score summed across antibiotic doses was ≥0.4 (Fig. 4A, SI
Appendix, Fig. S18, and Dataset S4).

Fractional Inhibitory Concentration Determination. We measured the mini-
mum inhibitory concentration (MIC) of antibiotic A (MICA) and compound B
(MICB) individually as the first well in the dosage series with <10% growth.
For a well in the matrix at dosage point (A: x, B: y) with <10% growth, we
calculated FIC index = x/MICA + y/MICB. The interaction was classified as
synergistic if the minimum FIC index was ≤0.5 (30).

Compound Exchange Between Microwells. Source droplets (resorufin, 10 μM in
CAMHB) and sink droplets (fluorescein, 5 μM, CAMHB) were made in Bio-Rad
QX200 cartridges using 2% wt/wt RAN Biotechnologies 008-FluoroSurfactant in
Novec 7500 fluorous oil (3M). Equal volumes of droplets were pooled by micropi-
pette in a microcentrifuge tube (5 min) and loaded into the chip (5 min) (Fig. 2A).
We washed the chip with oil containing 2%, 0.5%, or 0% wt/wt surfactant and
mechanically clamped the chip to the glass (SI Appendix, Fig. S1). To measure
interwell exchange, we compared the mean resorufin signal of source-only wells
and sink-onlywells (normalized to their sum)with resorufin signal of source droplets
and sink droplets in source + sink wells (normalized to their sum) (Fig. 2 B–D).
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